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SUMMARY

Thermodynamic growth or melt and mechanical redistribution due to lead opening or ridge formation shape
the thickness distribution of the Arctic ice cover and impact the overall strength of pack ice. Specifically,
the deformation and strength of ice are not isotropic but vary with the thickness and lead orientation. To
reflect these facts, we develop an anisotropic, elastic-decohesive constitutive model for sea ice together with
a model to describe an oriented, ice thickness distribution. The tight connection between the mechanical
response and the thickness distribution is an improvement over a previous model that only depended on the
average ice thickness. The model describes mechanical responses anisotropically in both the elastic and fail-
ure regimes. In the elastic regime, the constitutive relation implicitly reflects strong and weak directions of
the pack ice depending on the distribution of thin ice (including open water) and thicker ice (e.g., multi-year
ice or ridges). In the failure regime, the model predicts both failure initiation and the lead orientation. Evo-
lution from initial failure to complete failure when traction-free crack surfaces are formed is also modeled.
Crack or lead width is determined during the evolution. Various examples of failure surfaces are presented
to describe the behavior of modeled ice when the thickness distribution varies. The model predictions are
also illustrated and compared with previous modeling efforts by examining regions of ice under idealized
loading. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As an interface between the ocean and the atmosphere in polar regions, sea ice plays a significant
role in the Earth’s thermohaline balance and is an important component of global climate and circu-
lation simulations. The relative movement of pack ice is driven by external forces (i.e., wind, ocean
current, sea-surface tilt, and Coriolis forces) and can induce very large internal stresses, and conse-
quently may lead to fractures (i.e., leads or open water) that can extend for thousands of kilometers.
In the winter, open water freezes rapidly when exposed to the colder atmosphere. The freezing and
melting of ice is governed by thermodynamics. The combined effect of mechanics and thermody-
namics results in a range of ice thicknesses, typically described by a thickness distribution function
[1, 2]. Moreover, mechanical and thermodynamic processes each depend on the ice thickness, which
results in coupling between the processes. Therefore, an accurate simulation of sea ice must account
for both mechanics and thermodynamics and their dependence on thickness.

On a small scale, the mechanics of sea ice itself can often be modeled well, up to failure, as
an isotropic elastic material characterized by two material constants, which are Young’s modulus,
E, and Poisson’s ratio, � [3]. However, across the polar regions, sea ice is not a homogeneous
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medium because of the existence of leads and pressure ridges [1], as well as other flaws. To repre-
sent the ice-lead-ridge composite as a continuum, including its failure, Coon et al., [4] proposed a
two-dimensional isotropic, elastic-plastic solid model with an associated flow rule. The model was
designed to be useful in a numerical simulation using a grid length scale on the order of 100 km
where many leads would be present within a computational element. Another constitutive model,
introduced by Hibler [5], assumed that pack ice is a viscous-plastic isotropic material that offers
strength in compression and shearing but no resistance to tension. Hibler’s model and its variations
(e.g., [6–9]) have been utilized in practically every global climate model. These types of models
do not provide an explicit representation of leads. To overcome this limitation, Schreyer et al., [10]
and Sulsky and Peterson [11] proposed an elastic-decohesive model for modeling the dynamics of
sea ice. In this model, sea ice deforms elastically and isotropically until the internal stresses reach
critical values (determined by a ‘decohesion’ function) where the initial failure occurs. The deco-
hesion function also determines the orientation of the lead. After the initiation of a crack, further
evolution is governed by associated flow rules based on the decohesion function. The advantage of
this model is that leads, if any, can be represented explicitly as macrocracks whose orientations and
openings are determined via the decohesion function and evolution equations. After failure initia-
tion, the overall mechanical behavior in the model is anisotropic, with material weaker in tensile
strength across the fracture, yet retaining its strength along the fracture.

Other anisotropic models have been developed that account for the orientation-dependent weak-
ness in ice due to leads. For example, Hibler and Schulson [12] apply traction continuity on the
interface between thick ice and thin, lead ice, together with the assumption of equal strain in the lead
direction. In this model, sea ice is assumed to be a viscous-plastic material, and the stress–strain
relation is a system of nonlinear equations. Wilchinsky and Feltham [13] use the viscous-plastic rhe-
ology and a relation between local and global strain rates so that mean stress can be used, making
the model more tractable numerically. An extension of this work in [14] considers sea ice as a layer
of granulated thick ice that consists of many rigid brittle floes intersecting along long narrow regions
of thinner ice. To avoid the detailed modeling of the fracture process, [15, 16] treat the ice cover as a
collection of diamond-shaped flows providing anisotropy through slip lines on diamond boundaries.
On the other hand, Weiss et al., [17] develop a damage model, called an elasto-brittle rheology for
sea ice, that degrades the Young’s modulus, reducing all stress components as the ice weakens.

This paper continues the development of the elastic-decohesive constitutive model [10] with the
goal of better connecting the thickness distribution to the stiffness and strength of the pack ice. We
should acknowledge that many aspects of this paper have been influenced by the ideas presented
in Coon et al., [18]. The basic formulations associated with an elastic-plastic continuum versus
failure predicted by an elastic-decohesive discrete constitutive equation are fundamentally different.
Nevertheless, the ideas presented by Coon et al., in describing a perfectly plastic yield surface
represent insight that is a direct precursor to the current model. Their interpretation of the yield
surface as a failure surface with both an isotropic form and an anisotropic form connected to an
oriented ice thickness distribution bears considerable similarity to some of the ideas developed in
this paper. The failure curves in this work contain many of the attributes outlined in [18].

As noted earlier, the mechanics and thermodynamics of ice affect the thickness, and the thickness,
in turn, determines mechanical and thermodynamic properties. In this work, as in our previous work
[11], thermodynamic changes to the thickness distribution due to melting and freezing are modeled
for a column of ice using the model in [19]. The creation of open water depends on the divergence
of the pack due to lead opening and ridges form due to the convergence of the pack, or lead closing.
The ridging model described in Lipscomb and Hunke [20, 21] completes the model for the time
evolution of the thickness distribution due to mechanics. In the other direction, thickness of pack ice
affects the distribution of internal stress. As a simple example, under the same loading conditions,
new thin ice can be broken more easily than multiyear thicker ice. The elastic-decohesive model
[10, 11] gives the stress per unit thickness of ice, and in these references, the stress resultant is
formed by multiplying the stress per unit thickness by the average thickness as determined from
the thickness distribution. In the present work, we use the detailed thickness distribution to more
tightly couple the mechanical behavior of ice to the thickness. There is no information about the
spatial arrangement of the ice within the thickness distribution; however, we make the assumption
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that the thinnest part of the distribution is associated with a lead and is oriented with the lead. This
assumption assigns an orientation to the thickness distribution that is tied to the ice mechanics.
With this assumption, the stress–strain relation of an ice element is anisotropic both in the elastic
and failure regimes. Two elements with the same average thickness, one with constant thickness
and the other with a distribution of thicknesses including thin ice, should not deform the same way.
Intuitively, the presence of thin ice, especially in a lead, should allow the element to deform more
readily in certain directions.

In order to reflect this intuition, we first develop an anisotropic elastic constitutive relation for
sea ice having an oriented thickness distribution. The anisotropy develops solely from the thickness
distribution. The elastic constants of the anisotropic material are derived using a rule-of-mixtures
model that is commonly used in the theory of composites (e.g., [22, 23]). The composite in this
case is ice with different thicknesses where a segment of ice with uniform thickness is assumed to
deform isotropically. A computational element consisting of different ice thicknesses is replaced
by an equivalent homogeneous element of a uniform thickness, but consisting of an anisotropic
material. The replacement ensures conservation of volume and strain energy between the original
element and the equivalent element. As in previous work, ice deforms elastically until initial failure
occurs, where failure is defined by the stress reaching a critical state based on a decohesion func-
tion, which depends on the traction and ice strength. This function is an extension of the isotropic
version developed by Schreyer et al., [10] because the ice strength now depends on the ice thickness
distribution, and therefore on the lead orientation. The evolution of failure with an associated flow
rule for the extended model is also addressed in this work.

The paper is organized as follows. In the next section, we summarize the equations that govern
the dynamics of sea ice. Although these equations appear elsewhere in the literature, we give them
here to define consistent notation for the rest of the paper and to provide a foundation for the dis-
cussion of model improvements in the subsequent sections. Section 3 presents the rule-of-mixtures
model for the composite, anisotropic elastic moduli. Then, Section 4 describes the failure model-
ing, specifically by defining the anisotropic ice strengths used in the decohesion function. Evolution
of failure is discussed in Section 5. Section 6 examines the behavior of the model under idealized
loading conditions such as uniaxial tension and simple shear. These examples show how account-
ing more precisely for thin ice alters the model predictions compared with relying solely on average
thickness. Concluding remarks are made in Section 7.

2. GOVERNING EQUATIONS FOR SEA ICE DYNAMICS

Sea ice mechanics is governed by the momentum balance equation. Because sea ice is thin relative to
its extent, the momentum balance is reduced to two dimensions. Variable ice thickness is accounted
for through an evolution equation for the ice thickness distribution. Thermodynamics is governed
by a heat equation. Heat transfer is only computed in the vertical direction with boundary conditions
given by conditions at the atmosphere-ice and ocean-ice surfaces. The momentum equation involves
a constitutive relation specifying the stress–strain relation describing ice rheology. Because a consti-
tutive relation for sea ice coupled to the thickness distribution is the key development of the present
work, in this section, we first summarize the momentum equation written in terms of 2D quantities
and then summarize the governing equation for the thickness distribution. We end this summary by
specifying the need for a constitutive relation that can take into account the thickness distribution.

2.1. Momentum equations

A detailed derivation of the reduction from three dimensions to the two-dimensional descrip-
tion of momentum balance, along with the required assumptions, can be found in Gray and
Moreland [24]. In this section, we summarize the equations in order to emphasize the connection to
the thickness distribution.

Momentum balance is written with respect to a Cartesian right-handed, coordinate system with
its origin fixed on the Earth’s surface. The in-plane coordinates x D .x1; x2/ are in a horizontal
tangent plane, and the x3 direction is the vertical direction, normal to the geopotential mean sea
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surface. Curvature is neglected. The velocity, with components v D .v1; v2/, is assumed to lie in the
1-2 plane with no out of plane component. The momentum equation in the 1-2 plane can be written

m
dv˛

dt
D

@

@xˇ

�
N˛ˇ

�
C �a˛ C �

w
˛ C 2m� sin��˛ˇ3vˇ �m Og

@´w

@x˛
; (1)

with the indices ˛ and ˇ ranging from 1 to 2 and with repeated indices summed. The quantity m
is the mass per unit area of ice. The first term on the right-hand side represents the internal ice
forces. The ‘extra’ stress resultant, N˛ˇ , is a second rank tensor, and it is the difference between the
vertically integrated stress in the ice and the vertically integrated hydrostatic load. This extra stress
resultant has dimensions of force per unit length and is called extra stress because it is the stress
extra to the intrinsic water pressure. The second and third terms are the components of air stress,
�a D

�
�a1 ; �

a
2

�
, and water stress, �w D

�
�w1 ; �

w
2

�
, on the ice layer, that are caused by surface winds

and ocean currents, respectively. The exact specification of these terms is not needed for this work.
The third term is the Coriolis force where� is the angular velocity of the Earth about its north-south
axis, and � is the latitude of the point x. Also in the third term, �˛ˇ3 denotes the alternating symbol
(i.e., �123 D ��213 D 1; �113 D �223 D 0). The last term is the acceleration due to the tilting of the
sea surface with the acceleration due to gravity denoted by Og and ´w.x; t / giving the height of the
sea surface at the point x at time t [24].

2.2. Thickness distribution

The best resolved regional simulations today use a computational element on the order of 1-5 square
kilometers. An element of this size can contain ice of varying thickness, from zero thickness (open
water), to new ice only centimeters thick, to ridged ice that can be tens of meters thick. The variation
of thickness in a given element is incorporated in simulations through a subgrid scale thickness
distribution [1, 4]. For a region of ice with area A.x; t /, the thickness distribution, g.x; h; t/, is
defined such that Z hiC1

hi

g.x; h; t/ dh D
Ai .x; t /

A.x; t /
(2)

where Ai is the area within this region that is covered by ice of thickness h in the range hi � h <
hiC1. The function g is analogous to a probability distribution and when integrated over thickness
space (h 2 Œ0;1/) is equal to one. Note that for the special case where the element contains only
open water, the function g is a Dirac delta function at h D 0. The governing equation for the
thickness distribution is expressed as follows [1]

@g
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.fg/C  : (3)

The function f .h/ D dh=dt is the thermodynamic growth rate, and  is a function describing the
mechanical redistribution of ice accounting for ridge formation in converging flow or the creation
of open water in diverging flow. The thermodynamic growth rate is determined by solving a heat
equation through the ice thickness. A detailed specification of f and  are not needed for this work,
but can be found in [11], which in turn is based on [21] and [25].

The thickness distribution can be used to define effective or mean properties of the ice cover over
the area A. For example, the mass per unit area, m, equals

m.x; t / D

Z 1
0

�icehg.x; h; t/ dh; (4)

where �ice is the density of ice. It is reasonable to consider �ice to be constant, and then m D
�iceh where h.x; t / D

R1
0
hg.x; h; t/ dh is the mean ice thickness. This relationship is the first

connection between the thickness distribution and the momentum equation describing ice dynamics

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2015; 39:988–1013
DOI: 10.1002/nag



992 H. D. TRAN, D. L. SULSKY AND H. L. SCHREYER

because m appears in Equation (1). The goal of this paper is to examine the role of the thickness
distribution, described by the function g.x; h; t/ in determining the extra stress resultant N.x; t /.
To this end, we will examine how the extra stress per unit thickness of ice, � .x; t /, is related to the
stress resultant, N, through the thickness distribution. Note that � has dimensions of force per unit
area and is physically stress. Being the stress resultant, N has units of force per unit length.

The relationship between the stress and the stress resultant is [4]

N.x; t / D
1

A

Z
A

 Z �

0

� dx3

!
da (5)

where �.x; t / is the ice thickness at x 2 A. If the stress � is constant through the thickness, that is,
does not depend on x3, then

N.x; t / D
1

A

Z
A

��da: (6)

The area integral can be converted to an integral over h using the thickness distribution in A. If the
stress � depends on the ice thickness, � D O� .x; h; t/, then

N.x; t / D
Z 1
0

h O� .x; h; t/g.x; h; t/ dh: (7)

Finally, note that if � does not depend on h, then N D h� . In fact, it is this expression for N that
was used in previous work (e.g., [26]). In this paper, we argue that the stress � (and the strain) can
depend on h, and we incorporate this dependence into the constitutive relation for N when it occurs.

In the next section, we derive the thickness-dependent constitutive model for N in the elastic
regime, and then in the following section, we examine the failure regime. When an element of ice
has failed and there is a modeled orientation to that failure or lead, we assume that g.x; h; t/ is
oriented with the lead, and the thinnest ice is in the lead. In this paper, we use the term ‘lead’ broadly,
as in [18], to mean not only an area of open water due to a fracture in the ice but also to describe
long narrow features that contain new ice, ruble ice, or a previous fracture that has not yet regained
the strength of intact ice. This orientation of the thickness introduces anisotropy into the constitutive
model, even in the elastic regime. If there is no lead predicted in the element, then we revert to
using the average thickness, isotropic elasticity, and our original decohesive model. A more detailed
description of an oriented thickness distribution is possible [18, 27] in which a separate distribution
is used for lead ice and intact ice with rules for transitioning between the two. While not as detailed,
the assumption that the thinnest part of a single distribution g can be associated with the ice in the
lead simplifies the computations and appears to suffice.

3. DERIVATION OF ELASTIC CONSTANTS OF THE EQUIVALENT SYSTEM

The aim of this analysis is to ask what the effective, or equivalent, properties of an element of
ice of area A should be in order to capture information about the deformation of ice within that
area when the ice has variable thickness. We assume that on a small scale, the ice is homogeneous
and isotropic, characterized by known values of E and �. We determine the aggregate response of
this ice on a large scale due to the distribution of thicknesses within the aggregate. The essential
concept is analogous to determining the effective stiffness of a device consisting of two springs.
The effective stiffness depends on whether the springs are arranged in parallel or in series. In series,
the elongations for the two springs add, but they each have the same force, resulting in an effective
stiffness that is the harmonic mean of the two stiffnesses. In parallel, the two springs have the same
elongation and the forces add, resulting in an effective stiffness that is the arithmetic mean of the two
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stiffnesses. In the case of ice, ice with differing thickness has differing stiffness. Thus, a ‘parallel’
or ‘series’ arrangement of thickness with respect to the loading direction yields a different response.

In computational implementations, the thickness space is discretized into a finite number of cate-
gories on which the function g is approximated (e.g., [28]). Each category has an average thickness
hi and a fractional area ai , where i D Œ1; N 	 and N is the number of categories. It is easiest to
illustrate the model in this discrete setting, and we start the derivation by examining two categories,
N D 2. For simplicity, consider the case of a square unit element that contains two thickness cate-
gories as shown in Figure 1(a). The extension to the multi-category case is straightforward and will
be discussed at the end of this section. The thickness and length of the categories are ¹h1; l1º and
¹h2; l2º, respectively. Both categories have the same width, w D l1 C l2. The objective here is to
replace the original element, Figure 1(a), by an equivalent element of the same area, with a uniform
thickness, hp , so that the effective stress resultant is the thickness of the equivalent element times
the effective stress, N D hp� , as shown in Figure 1(b). The replacement is based on the require-
ment that under the same loading, the overall deformation of the two elements should be the same
so that the strain energy is conserved. The thickness of the equivalent element, denoted by hp (p for
parallel), is based on conservation of volume and is

hp.l1 C l2/w D h1l1w C h2l2w ! hp D
h1l1w C h2l2w

w.l1 C l2/
D a1h1 C a2h2: (8)

All of the results that follow in this section are derived with respect to a Cartesian coordinate
system defined such that the 1 and 2 directions are perpendicular and parallel, respectively, to the
geometric arrangement of the categories, as shown in Figure 1(a). These directions are called prin-
cipal material directions because their definition is based on the orientation of the categories. More
generally, the 1 direction is perpendicular to the lead direction, and the 2 direction is parallel to
the lead direction, and the thickness distribution is aligned so that the thin ice is in the lead. The
effective material properties of the equivalent element are anisotropic and consist of the moduli Ei ,
shear moduli Gij , and Poisson’s ratios �ij , with i; j 2 ¹1; 2º and i ¤ j , and are derived using a
rule-of-mixtures model as shown in the succeeding text.

3.1. Model for E1

Assume as in Figure 2(a) that the original element is subjected to a stress resultant F11 such that the
element elongates in the 1 direction (and contracts in the 2 direction due to Poisson effects). Under
this loading, the normal stress in the 1 direction of each category is



.1/
11 D

F11

wh1
and 


.2/
11 D

F11

wh2
; (9)

Figure 1. (a) Original element with two categories of different thicknesses; (b) equivalent element of a
uniform thickness and the same area as the original one.
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Figure 2. (a) Deformation of the original element under uniaxial loading in the 1 direction; (b) deformation
of the equivalent element under the same loading.

in which the superscript on 
 refers to the category number. With the assumption that there is only
normal stress in the 1 direction generated in both categories, the strain in the 1 direction for each
category is

"
.1/
11 D



.1/
11

E
and "

.2/
11 D



.2/
11

E
; (10)

where E is the Young’s modulus of homogenous ice on the small scale. If we denote ı.1/1 and ı.2/1
as the elongations of categories 1 and 2, respectively, as shown in Figure 2(a), then we have the
following relation

ı
.1/
1 D l1"

.1/
11 and ı

.2/
1 D l2"

.2/
11 : (11)

The combination of (9), (10), and (11) results in

ı
.1/
1 C ı

.2/
1 D

F11

Ew

�
l1

h1
C
l2

h2

�
: (12)

Under the same application of the stress resultant, F11, as with springs in series, the equivalent
element has to elongate an amount of ı.1/1 C ı

.2/
1 as shown in Figure 2(b). Thus, the normal stress

and strain in the 1 direction of the equivalent element is


11 D
F11

whp
and "11 D

ı
.1/
1 C ı

.2/
1

l1 C l2
: (13)

Because there is no normal stress in the 2 direction and no shear stress, the extensional modulus in
the 1 direction of the equivalent material is E1 D 
11="11. Therefore, from (12) and (13), we obtain
the result

E1 D
h1h2.l1 C l2/

hp.h1l2 C h2l1/
E D

h1h2

hp.a2h1 C a1h2/
E: (14)

A thickness hs (s for series) is defined as

1

hs
D
a1

h1
C
a2

h2
: (15)

Then Equation (14) can be written in a contracted form as

E1 D
hs

hp
E: (16)
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As can be seen in (14), the value of E1 goes to zero when one of the categories has zero thickness
(i.e., the ice in this category melts completely). This observation means that the equivalent element
does not have load-carrying capacity in the 1 direction when one category is open water. This fea-
ture enables our developed constitutive relation to represent implicitly open water in the thickness
distribution. It is also noted that

hp � hs D
.h1 � h2/

2a1a2

.a1h2 C a2h1/
� 0 (17)

for any non-negative values of thickness hi and area fractions ai , i 2 ¹1; 2º. This observation means
that E1 is always smaller than or equal to E.

3.2. Model for E2

Assume as in Figure 3(a) that the original element is subjected to a stress resultant F22 such that the
element elongates in the 2 direction (and contracts in the 1 direction due to Poisson effects). The
normal stress in the 2 direction of the categories is related to the stress resultant by



.1/
22 h1l1 C 


.2/
22 h2l2 D F22: (18)

With the assumption that there is only normal stress in the 2 direction in both categories, the strain
in the 2 direction for each category is

"
.1/
22 D



.1/
22

E
and "

.2/
22 D



.2/
22

E
: (19)

Because the categories are ‘bonded’ together, as with springs in parallel, they both elongate the same
amount in the 2 direction, namely, ı2 as shown in Figure 3(a). We then have the following relation

ı2 D w"
.1/
22 D w"

.2/
22 : (20)

Under the same application of the stress resultant, F22, the equivalent element has to elongate an
amount of ı2 as shown in Figure 3(b). Thus, the normal stress and strain in the 2 direction for the
equivalent element is


22 D
F22

hp.l1 C l2/
and "22 D

ı2

w
: (21)

Figure 3. (a) Deformation of the original element under uniaxial loading in the 2 direction; (b) deformation
of the equivalent element under the same loading.
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Combining (18), (19), and (20) and the second part of (21), we have

"22 D
F22

E.h1l1 C h2l2/
: (22)

Because there is no normal stress in the 1 direction and no shear stress, the extensional modulus in
the 2 direction of the equivalent material is E2 D 
22="22. Therefore, with the use of the first part
of (21) and (22), we obtain the result

E2 D
E.h1l1 C h2l2/

hp.l1 C l2/
D
E.a1h1 C a2h2/

hp
: (23)

Recalling the definition of hp given in (8), the final result is

E2 D E: (24)

Regardless of the thickness distribution, the value of E2 is always a constant that is the Young’s
modulus of the original material. As shown in the previous section, we have E1 � E. Therefore,
the 1 direction always has less or equal stiffness than the 2 direction of the equivalent element.

3.3. Model for �21

Assume again that the original element is subjected to a stress resultant F22 as shown in Figure 3(a).
Because both categories have the same Poisson’s ratio �, their strains in the 1 direction are the same

"
.1/
11 D "

.2/
11 D ��

ı2

w
: (25)

Denote ı.1/1 and ı.2/1 the shrinkages of each category in the 1 direction, as shown in Figure 3(a).
Then, we have the following result

ı
.1/
1 D l1

ˇ̌̌
"
.1/
11

ˇ̌̌
D l1�

ı2

w
and ı

.2/
1 D l2

ˇ̌̌
"
.2/
11

ˇ̌̌
D l2�

ı2

w
; (26)

in which the absolute value is used because the strain in the 1 direction under the application of F22
is commonly negative. The shrinkage of the equivalent element is ı.1/1 Cı

.2/
1 as shown in Figure 3(b).

Thus, the strain in the 1 direction of the equivalent element is

j"11j D
ı
.1/
1 C ı

.2/
1

l1 C l2
: (27)

Using the result (26), with the note that "11 < 0, we have

"11 D ��
ı2

w
: (28)

The combination of (21) and (28) results in

"11 D ��"22: (29)

By definition of the Poisson’s ratio �21, we have the final result

�21 D �: (30)

The value of Poisson’s ratio �12 is deduced from the symmetry of the compliance matrix, that is,
�12=E1 D �21=E2.
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3.4. Model for G12

Assume the original element is under pure shear loading with the stress resultant F12 and F21 as
shown in Figure 4. Because the element is square, F12 D F21 due to moment equilibrium. Under
this loading, the shear stress in each category is

�
.1/
12 D

F12

wh1
and �

.2/
12 D

F12

wh2
: (31)

With the assumption that there is only shear stress generated in both categories, the (engineering)
shear strains in each category are

�
.1/
12 D

�
.1/
12

G
and �

.2/
12 D

�
.2/
12

G
; (32)

where G is the shear modulus of the original material, that is, G D E=.2C 2�/. Denote by ı.1/2 and
ı
.2/
2 , the shear displacement in the 2 direction for each category, and by ı1 the shear displacement

in the 1 direction of both categories as shown in Figure 4(a). Then, we have the following relations

�
.1/
12 D

ı1

w
C
ı
.1/
2

l1
and �

.2/
12 D

ı1

w
C
ı
.2/
2

l2
: (33)

In (33), we multiply the first part with l1 and the second part with l2, then add them together to have
the following relation to be used in a later calculation of the shear strain of the equivalent element

l1�
.1/
12 C l2�

.2/
12 D

ı1

w
.l1 C l2/C ı

.1/
2 C ı

.2/
2 : (34)

Under the same loading, the equivalent element has to deform as indicated in Figure 4(b). Thus, the
shear stress and shear strain are

�12 D
F12

whp
and �12 D

ı1

w
C
ı
.1/
2 C ı

.2/
2

l1 C l2
: (35)

Using (34), we can re-write the second part of (35) as

�12 D
l1�

.1/
12 C l2�

.2/
12

l1 C l2
: (36)

Figure 4. (a) Deformation of the original element under pure shear loading; (b) deformation of the equivalent
element under the same shear loading.
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Continuing, using (31) and (32), we have

�12 D
l1

F12
Gwh1

C l2
F12
Gwh2

l1 C l2
: (37)

The shear modulus of the equivalent material is computed as G12 D �12=�12. Using the first part of
(35) and (37), we obtain the result

G12 D
h1h2.l1 C l2/

hp.h2l1 C h1l2/
G D

h1h2

hp.a1h2 C a2h1/
G: (38)

With the definition of hs in (15), the shear modulus, G12, is written more compactly as

G12 D
hs

hp
G: (39)

Similar to E1, the shear modulus G12 goes to zero (i.e., the material does not offer any shear
stiffness) when one of the categories has zero thickness, and also G12 is always smaller than or
equal to G.

3.5. Summary of the elastic constants and extension to the multi-category case

The elastic constants of the anisotropic material of the equivalent element shown in Figure 1(b) can
be summarized in the following stress strain relation

2
4 "11"22
�12

3
5 D

2
64

1
kE

��
E

0

��
E

1
E

0

0 0 1
kG

3
75
2
4 
11
22
�12

3
5 ; k D hs=hp: (40)

This matrix form summarizes the relations given in (16), (24), (29), (30), and (39). The parameter
k is an anisotropy factor that indicates the difference between the extensional modulus E1 in the 1
direction and the Young’s modulus E of the original material, and the difference between the shear
modulus G12 and shear modulus G of the original material.

Now, consider the case where the original element contains N categories (N � 1) whose
geometries are arranged as shown in Figure 5(a), for the example, when N D 4. In this figure,

Figure 5. (a) Sketch of the original element with four categories of different thicknesses; (b) the equivalent
element of uniform thickness and the same area as the original one.
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¹hi ; liº, i 2 ¹1; 2; 3; 4º, is the thickness and length of category i . All categories have the same width
of w D l1 C l2 C l3 C l4. Again, the objective is to replace the original element by an equiva-
lent element, which has a uniform thickness hp as shown in Figure 5(b), such that both systems
deform equivalently under the same loading. Note that the equivalent element has the same area as
the original one, and a thickness of

hp D

NP
iD1

hi li

NP
iD1

li

D

NX
iD1

aihi (41)

to ensure conservation of volume. The procedure to obtain the elastic constants of the anisotropic
material of the equivalent element for the multi-category case follows the same arguments as for
the two-category case. The final result is a compliance matrix in the same form as Equation (40), in
which hs is defined as

1

hs
D

NP
iD1

.li=hi /

NP
iD1

li

D

NX
iD1

ai

hi
: (42)

As before, it can be shown that hp � hs (i.e., k � 1), and hs D 0 when one of the categories has
zero thickness.

In terms of the continuum formulation of Section 2, we have assumed that the small-scale stress,
� D O� .x; h; t/ and the small-scale strain, " D O".x; h; t/, are related by a linear, isotropic model in
the elastic regime,

O� D Ciso W O" (43)

where Ciso is a constant, isotropic, fourth-order, elastic, compliance tensor defined by the two elas-
tic parameters, E and �. On the other hand, the effective elastic properties for the region A were
determined to be anisotropic, with corresponding linear elastic, constitutive model

� D C W " (44)

where C D C.k;n/. The value of k D hs=hp is determined from

hp D

Z 1
0

hg.x; h; t/ dh (45)

1

hs
D

Z 1
0

1

h
g.x; h; t/ dh (46)

and n is a unit normal vector to the lead. A vector, t, tangent to the crack surface can be determined
from n in the plane of the ice. Together, n and t can be chosen to be basis vectors associated with the
material axes used earlier. The components summarized in (40) are the components of the inverse
of C in Voigt notation, given in terms of the material bases determined by n.

The stress resultant, N in (7), is now defined by replacing the local, small-scale stress with the
effective stress (44). Because the effective stress does not depend explicitly on h, we have N D h� .
Notice that the definition of hp in (46) is the same as the definition of h in Section 2. We view hp
as the effective thickness, so we could also define an effective thickness distribution, g.x; h; t/ D
ı.h � hp/, which gives the same stress resultant, N D h� , from (7).
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4. MATERIAL FAILURE

The decohesive failure model developed by Schreyer et al., [10] has two aspects. The first aspect
is the development of a failure function that describes a curve in stress space, which determines
the stress when failure begins and the orientation of the any potential crack. The second aspect
is a model determining how failure evolves once it is predicted to initiate. The first aspect of the
decohesive model is examined in this section, and the second aspect is studied in the next section.

In [10], the failure function before failure begins describes an isotropic failure curve. However, if
there is ice with varying thickness, we might expect the thinner ice to be more susceptible to failure,
depending on how the thin ice is oriented relative to the loading direction. Because the expected
behavior of an element of ice with varying thickness depends on the loading direction, the failure
curve should be anisotropic. This section presents a criterion that captures information about the
thickness variation to predict the failure of an equivalent element of ice of uniform thickness. We
begin with a summary of the isotropic model in order to be able to highlight the changes we are
proposing. After describing the model, two typical examples of an initial failure curve are used to
illustrate the general features of the model. Then, the extension of the model for an anisotropic
material is discussed. Lastly, examples of anisotropic initial failure curves for various thickness
distributions are presented at the end of the section and compared with the two typical isotropic
initial failure curves.

4.1. Summary of the isotropic model

The initial failure under external loading of a material is predicted by a failure function F , which is
defined such that [10]

F D max
n
Fn.�; 
ss/ (47)

where � is the traction vector on the plane defined by the unit normal vector n, and 
ss is the
normal stress component in the tangential direction s of this plane. Note that, unless n is a principal
direction, the unit tangent vector s is taken to lie on the projection of the traction � onto this plane,
that is,

s D
� � .�:n/n

k� � .�:n/nk
: (48)

The function Fn associated with n is defined as follows

Fn D
�2s

.sm�sf /2
C exp

 
�

 
�n

�nf
C
h�
t t i

2

f
02
c

� 1

!!
� 1 (49)

where

hxi D

²
x if x � 0
0 if x < 0

;

and �n and �s are the components of the traction � in the n and s directions, respectively
(i.e., �n D �:n and �s D �: s). The material parameters ¹�nf ; �sf º are defined as the failure
stress for pure tension and for pure shear, respectively, and f

0

c is the failure stress under uniax-
ial compression. Also, sm multiplied by the shear failure, �sf , is the maximum possible value for
the shear failure under large normal compressive stress, and � is related to sm through the relation
s2m.1 � e

��/ D 1 [10].
Analogous to a yield function in plasticity theory, the value of F indicates the state of material

deformation, for example, F < 0 is an elastic state, F D 0 indicates failure, and F > 0 is not
allowed. Typically, when ice is loaded, we begin with F < 0, which indicates that the constitutive
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behavior is in the elastic regime. Failure initiates when F reaches zero for some value of n, and this
value of n determines the normal to the physical crack forming in the ice, and thus determines the
orientation of a lead. In [10], the search for the maximum value of Fn in (47) is restricted to vectors
n in the plane of the ice. In this work, the search is taken over all possible directions of the normal
vector n in three-dimensional space. This feature enables the model to predict out-of-plane failure
in compressive loading.

For the isotropic failure curve with failure parameters
°
�nf ; �sf ; f

0

c ; sm

±
, initial failure under a

given loading condition can be predicted using the decohesion function defined in (47) and (49).
Figure 6 shows two examples of the initial failure curve. The materials employed in these examples
have failure parameters shown in Table I. The failure curve defined by F D 0 for each material is
plotted in the coordinate system of principal stress directions ¹p1;p2ºwhere 
1 and 
2 are principal
stresses associated with these principal directions. Note that the third principal stress, 
3 D 0, is
due to the plane stress assumption. Table II shows the direction of the normal vector n in each of the
segments of the failure curve, which is partitioned by the vertices ¹a1; b1; c1; d1º and ¹a2; b2; c2; d2º
as shown in Figure 6(a). Note that a normal n can be parameterized by two spherical coordinates
¹�; º, as shown in Figure 6(b). Because the failure function F is isotropic, the failure curve and
the direction of the normal vector are each symmetric about the plane whose projection onto the
p1 � p2 plane is the bisector of the first quadrant. Therefore, the directions of n are given only on
half of each failure curve in Table II.

For the first material, the failure surface is always perpendicular to the maximum principal direc-
tion. Especially, for the third quadrant, the normal vector is in the direction of p3 because 
3 D 0
is the maximum principal stress when 
1 and 
2 are both negative. This mode of failure models
crushing of pack ice and its piling up into ridges (and down into keels) under biaxial compres-
sive stresses as illustrated in Figure 7. The second material has a value of the failure stress in
pure shear, �sf , decreased by a factor of three compared with the first material. Its failure curve,
shown in Figure 6(a), is smaller than that of the first material. It can be seen that, for this material,

Figure 6. (a) Initial failure curves of the materials whose failure parameters are shown in Table I; (b)
definition of the normal vector n to the crack in the coordinate system of principal stress directions.

Table I. Failure parameters of the material
whose initial failure curves are shown in

Figure 6.

�nf �sf f
0

c
(kPa) (kPa) (kPa) sm

Material 1 25 75 125 4
Material 2 25 15 125 4
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Table II. Direction of the normal vector n to the crack, corre-
sponding to the failure curves in Figure 6.

Material 1 Material 2

a1 � c1 c1 � d1 a2 � b2 b2 � c2 c2 � d2

� 0o 90o ˙32o 0o ˙52o

 90o – 90o ˙58o !˙52o 0o

Figure 7. Illustration of crushing of pack ice under biaxial compressive stresses.

a mixed-mode failure occurs as a result of a combination of normal and shear stress components
on the initiating crack. The low value of �sf relative to �nf means that neither the tensile failure
stress, �nf , nor the compressive failure stress, f 0c , is attained. These values are interpreted as failure
values associated with brittle materials, which have a large value of �sf , as exhibited by material 1.
Moreover, for material 2, the normal vector to the crack is not in one of the principal directions but
somewhere between them. It is observed that the normal vector to the crack plane for all isotropic
materials is always in the plane of maximum and minimum principal directions.

4.2. Failure stresses for an anisotropic material

The decohesion function (49) is now applied to an anisotropic material whose failure stresses°
�nf ; �sf ; f

0

c

±
are not constants but depend on the crack orientation when there is a varying thick-

ness distribution. We assume that these failure stresses are constant and known on the small scale.
Similar to the case of elastic constants, the failure stresses (i.e., strengths) in the direction of mate-
rial axes are derived using a rule-of-mixtures model. A simple case of two thickness categories is
employed for the derivation. The extension to the general case of multiple categories follows. After
having the failure stresses in the directions of the material axes, we can obtain the failure stresses in
an arbitrary direction by employing an assumed interpolation expression from the three basic cor-
responding values in the material directions. We remark that, in the derivation of the basic failure
stresses, it is assumed that the failure shear stress �sf is large enough compared with the failure ten-
sion stress �nf (e.g., �sf � 3�nf ) so that under uniaxial tension or compression, the material fails
with a pure mode-I fracture. Schulson’s [29] experiments support this assumption for laboratory ice
because they indicate that the normal to the failure plane is in the maximum stress direction for the
quadrant where one principal stress is positive and the other is negative.

4.2.1. Failure stresses for pure tension. For the failure stress in the 1 direction, assume again that
the original element is subjected to a stress resultant F11 as shown in Figure 2. Suppose h2 � h1,
which results in 
 .2/11 � 


.1/
11 . Thus, category 2 will fail first once its stress reaches the failure stress

in tension of the material, that is, 
 .2/11 D �nf . Note that the failure of category 2 makes the whole
system fail under tension, and the failure stress resultant is

F cr11 D �nf h2w: (50)

Therefore, the failure stress for pure tension of the equivalent element will be

�nf1 D
F cr11
hpw

D �nf
h2

hp
(51)

where hp , as defined in (8), is the thickness of the equivalent element. The numerical index in the
subscript of the failure stress notation is used to indicate the normal direction of the plane associated
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with this failure stress. For the general case of multiple categories, h2 in (51) is replaced by the
minimum thickness hmin D min¹h1; h2; : : : ; hN º, where N is the total number of categories.

For the failure stress in the 2 direction, assume again that the original element is subjected to a
stress resultant F22 as shown in Figure 3(a). Because ".1/22 D "

.2/
22 D ı2=w, both categories have the

same normal stress in the 2 direction, that is, 
 .1/22 D 

.2/
22 D Eı2=w. This observation means that

both categories will fail at the same time under tension in the 2 direction when their normal stress
reaches the failure stress in tension of the material, that is, 
 .1/22 D 


.2/
22 D �nf . Thus, the failure

stress resultant is

F cr22 D �nf .h1l1 C h2l2/: (52)

The failure stress for pure tension of the equivalent element will be

�nf 2 D
F cr22

hp.l1 C l2/
D �nf

h1l1 C h2l2

hp.l1 C l2/
: (53)

Using (8), we obtain

�nf 2 D �nf : (54)

4.2.2. Failure stress for pure shear. Utilizing the same procedure we used to derive the failure stress
for pure tension, we can easily obtain the results of failure stresses in pure shear as follows

�sf 1 D �sf
h2

hp
; (55)

and

�sf 2 D �sf : (56)

For a general case of multiple categories, h2 in (55) is replaced by the minimum thickness hmin as
in the case of tension.

4.2.3. Failure stress for pure compression. Similar to the cases of tension and shear, under pure
compression in the 1 direction, failure will occur first in the thinnest category, which is assumed to
be category 2 (i.e., h2 < h1) for the system in Figure 2(a). For compression, the direction of F11
should be reversed in the figure. If the force, F11, is large enough, then we expect the thin ice in
category 2 to be crushed and ridged. As ridging progresses, h2 will increase until it reaches h1, at
which point the two categories are the same and become one. Further ridging will occur if F11 is
large enough to also cause ice of thickness h1 D h2 to fail. If F11 is not large enough, then no
further failure will occur. With this understanding of failure in compression, we make an assumption
that failure initiates when category 2 begins to fail, then the same procedure as in the case of tension
holds also for compression. The failure stresses in pure compression are

f
0

c1 D f
0

c

h2

hp
; (57)

and

f
0

c2 D f
0

c : (58)

As before, for multiple categories, h2 in Equation (57) is replaced by the minimum thickness hmin.
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Figure 8. Direction of a unit vector p in the material coordinate system.

4.2.4. Failure stress in an arbitrary direction. The failure stress in the direction of a vector p,
defined in the material coordinate system as shown in Figure 8, is assumed to be interpolated from
the basic values in the three material directions using a tensor projection operator as follows

�p D .�1i ˝ i C �2j ˝ j C �3k˝ k/ � .p ˝ p/ (59)

where ¹�1; �2; �3º are the failure stresses in the material directions 1, 2, and 3, respectively, and
¹i ; j ;kº are the unit vectors associated with these directions. Equation (59) applied to the failure
stress in pure tension, shear, and compression reduces to the corresponding values for �i that we
have derived in the previous sections. We remark that we assume equivalence between the 2 and 3
directions so failure stress in the 3 direction is the same as for the 2 direction. Let ¹˛; ˇº denote the
two spherical coordinates of p as shown in Figure 8, that is, p D .cosˇ cos˛/i C .cosˇ sin˛/j C
.sinˇ/k. Then, Equation (59) becomes

�p D .cosˇ cos˛/2�1 C .cosˇ sin˛/2�2 C .sinˇ/2�3: (60)

4.3. Anisotropic failure curves

Having the values of failure stress in hand, we now can apply the formulation (47)–(49) for the
anisotropic material of the equivalent element to determine the initial failure curve. Note that when
we apply (47)–(49) to an anisotropic material, the values of ¹�nf ; �sf ; f

0

c º depend on the direction of
the crack plane following Equation (60). The first example for an anisotropic failure curve is shown
in Figure 9(a). In this example, the original element has two categories as shown in Figure 9(b).
The area of the two categories is the same, l1 D l2, but the thickness of the first category is three
times larger than that of the second category, h1 D 3h2. The material employed in this example is
material 1 in Table I. For this example, the material axes ¹1; 2; 3º are taken to be coincident with
the principal axes ¹p1;p2;p3º. In Figure 9(a), for comparison, we also plot the isotropic failure
curve in which the material of the equivalent element is assumed to be isotropic. It can be seen
that the anisotropic failure curve is smaller than the isotropic one because the failure stress under
tension in the 1 direction of the anisotropic model is smaller than that of the isotropic model, that
is, �nf1 D .h2=hp/�nf D 0:5�nf . This is obvious because the existence of thin ice in category 2
makes the 1 direction the weakest in tension.

Figure 10 illustrates the dependence of the failure curves on the thickness distribution. Consider
again the case of two categories that have the same area fractions but different thicknesses. While
the average thickness hp is kept unchanged, the relative difference between h1 and h2 is varied as
shown in the legend of Figure 10. Material 1 in Table I is used for this example, and the material
axes are aligned with the principal axes as shown in Figure 9(b). It can be seen that the failure curves
become smaller as the relative difference between h1 and h2 becomes larger. It is easier to break a
mixture of ice as the ice in one category becomes thinner.
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Figure 9. (a) Initial failure curves for the anisotropic model and the isotropic model for material 1 in Table I;
(b) schematic of the thickness distribution of the original element used in this example.

Figure 10. (a) Initial failure curves for the anisotropic model with different thickness distributions; (b)
schematic of the thickness distribution of the original element used in this example.

5. EVOLUTION OF FAILURE

After failure has been initiated due to stress reaching the failure curve in stress space, it is assumed
that in physical space, a discontinuity of displacement across the crack surface develops simultane-
ously with a reduction of the strength on this surface. A macrocrack is formed when the material
completely loses its strength, and traction-free surfaces are created (provided that there is no exter-
nal traction applied on the crack surfaces). In terms of n�s components, the jump (i.e., displacement
discontinuity) is denoted

Œu	 D Œun	nC Œus	 s: (61)

The decohesion function (49) is modified to include a softening function, fn, in order to include
traction reduction in the model

Fn D
�2s

.sm�sf /2
C exp

 
�

 
�n

�nf
C fn

 
h�
t t i

2

f
02
c

� 1

!!!
� 1: (62)
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In order to specify the traction reduction, we introduce a material constant uo as the value of the
displacement discontinuity in the n-direction when the macrocrack is formed. Then, we define
the relation

fn D

�
1 �

un

uo

�
: (63)

With this definition, the softening function is non-negative and decreases linearly from 1 to 0 as the
crack evolves from its initial failure state to a macrocrack. If there is no shear (i.e., �s D 0), then
when fn D 0, it is only possible to have Fn D 0 if �n D 0, that is, the traction on the failure surface
is zero and the material has separated. With shear, it is possible to have a negative normal traction
component on the failure surface. An associated flow rule is considered to compute the evolution
of failure

Œ Pun	 D P!uo�nf
@Fn

@�n
and Œ Pus	 D P!uo�nf

@Fn

@�s
(64)

where the superimposed dots denote derivatives with respect to time, and the common factor uo�nf
in these expressions is introduced to render the evolution parameter ! dimensionless.

The parameter uo gives a length scale over which a macrocrack is formed. The failure energy is
the energy required, per unit area of crack face, to open the crack. If a crack is opened in tension
(mode I failure), then the failure energy is 0:5�nf uo. This relation provides a means to determine
the value of uo.

To summarize the numerical algorithm, consider a square element of size w and thickness hp as
indicated in Figure 11(a). For an active crack with current components of discontinuity Œun	 and Œus	
assumed to be constant across the crack surface, assume further that the normal n to this crack has
� ¤ ˙90o as indicated in Figure 11(b). (At the end of this section, we discuss the special case when
� D ˙90o.) Denote Nn and Nt unit vectors in the 1�2 plane that are perpendicular and tangent to the
intersection of the crack plane and the 1�2 plane. Note that Nn is along the projection of n onto the
1�2 plane. Then, the discontinuity in the Nn and Nt directions are

Œu Nn	 D Œu	 : Nn and ŒuNt 	 D Œu	 : Nt (65)

where Œu	 is defined in (61). The smeared crack approach (e.g., [10, 30]) is used to compute the
decohesive strains in Nn�Nt as

"dcNn Nn D
Œu Nn	

wn

"dc
NnNt
D
Œu Nn	

2wn

"dcNt Nt D 0

(66)

Figure 11. (a) Sketch of the relationship between the displacement discontinuity and decohesive strains; (b)
normal vector to the crack surface in the global coordinate system.
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where wn is the crack length, wn D w= cos  in Figure 11. The stress rate is then computed as

P
11 D C11

�
P"11 � P"

dc
11

	
C C12

�
P"22 � P"

dc
22

	
P
22 D C12

�
P"11 � P"

dc
11

	
C C22

�
P"22 � P"

dc
22

	
P�12 D C33

�
P"12 � P"

dc
12

	 (67)

where ¹C11; C12; C22; C33º are the components of the stiffness matrix, which is the inverse of the
compliance matrix defined in (40), but rotated to the global coordinate system, P"ij (i; j 2 ¹1; 2º)
is the strain rate, and P"dcij (i; j 2 ¹1; 2º) is the decohesive strain obtained by transforming the
components given in (66) to the global coordinate system.

For the special case when the failure surface is in the 1�2 plane (i.e., � D ˙90o), the material
fails when both principal stresses 
1 and 
2 are negative. These failure modes, as illustrated in
Figure 7, make the thickness increase. This mode of failure is analogous to buckling of a column
under compression. After one of the principal stresses in the thinnest ice reaches the critical value of
f
0

c , and the loading continues to provide compression of the material, the thickness starts increasing
while the principal stress in the thin ice maintains the value of f

0

c . The result for the effective
compressive strength is that it increases according to (57) as the ice thickens. The increment of
thickness is computed from volume conservation of the basic element.

6. NUMERICAL EXAMPLES

In this section, we present some numerical examples to illustrate features of the developed model.
The material-point method (MPM) [26, 31] is employed to solve the momentum equation. Examples
involving tensile and shear failure are considered to illustrate the typical features of the developed
model. In our numerical implementation of the elastic-decohesive constitutive model, we represent
a lead predicted by the model with a line through the center of an element in the discretization,
and the line traverses the element. The width of the predicted lead is determined by the jump in
displacement computed during the evolution of failure. We do not attempt to connect the leads from
one element to the next. Any alignment that occurs is solely due to the stress state in the ice that
makes a particular lead orientation favorable. This representation of leads is perhaps the simplest
possible, and the performance of the numerical algorithm based on these simplifying assumptions,
as compared with more complicated approaches, warrants further, future investigation.

As noted in the last section, displacement discontinuities obtained from the decohesive model
are used to obtain smeared crack-strain components. The crack strains produce a stress-softening
feature within the element. If the element is larger than a critical size, there is a stress reversal, which
cannot be handled without a major (unknown) modification to the numerical procedure. If square
elements of side �x are used, stress reversal does not occur provided �x is less than a critical
length,�xcr � uoE=�nf . Typically, an element size somewhat smaller than the critical size is used
to preclude reversal for all paths. In the examples, we use an artificially large value of uo to avoid
stress reversals.

6.1. Example 1: a region of ice under uniaxial tensile stress

The first example shows the effect of the thickness distribution on the formation of cracks in a
pure opening mode. Consider a region of ice with length L D 70 km and width W D 30 km as
shown schematically in Figure 12. The left and right sides of the region have a prescribed horizontal
velocity of zero and vo, respectively, and a prescribed vertical traction of zero (i.e., they are free
to move vertically). The value of vo is chosen to be small enough so that the numerical dynamic
solution approximates the static solution. For this example, the value of vo is 0:001m/s. A material
with properties shown in Table III is employed for this example. The region has a uniform thickness
h D 2m except in a narrow sub-region toward the left side that has a thickness distribution with two
categories as shown in the Figure 12. Thickness and area fraction of the categories are taken to be
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Figure 12. Schematic of a region of ice under a horizontal stretch.

Table III. Properties of the material employed for the problem shown in
Figure 12.

Young’s modulus �nf �sf f
0

c uo
(kPa) Poisson’s ratio (kPa) (kPa) (kPa) sm (m)

1000 0.36 25 75 125 4 3000

Figure 13. Background grid and different types of material points used in the numerical simulation of the
problem in Figure 12. Blue circles represent rigid material points, the red circles are material points having

�nf , and the green circles are material points having ��
nf

.

h1 D 1m and h2 D 3m, and a1 D a2 D 0:5. This set up is equivalent to a thickness distribution
of g D ı.h � 2/ except in the narrow strip where g D 0:5ı.h � 1/ C 0:5ı.h � 3/. Note that the
average thickness associated with these thickness distributions is hp D 2m, everywhere. Also in the
center of the region, the material is chosen to be slightly weaker than the rest with a smaller value
of failure stress in pure tension ��

nf
D 0:9�nf as shown in Figure 12.

For numerical simulation using the MPM, the region is initially discretized into 7 � 3 cells on
the background grid of 13 � 7 cells as shown in Figure 13. The cell size is 10 km on each side, and
there is one material point per cell initially. To model boundaries whose velocities are prescribed,
additional regions made of a rigid material (i.e., material having an infinite mass) are employed.
These rigid regions have a velocity equal to the prescribed value. In Figure 13, the blue circles are
rigid material points, the red circles are material points having �nf , and the green circles are material
points having ��

nf
. The material points carry physical information of the problem and move in a

Lagrangian manner. Details about the MPM can be found in the aforementioned references.
The simulation is from an initial, undeformed state until a complete vertical crack is formed

through the region. Figure 14 shows the numerical results of the normalized crack opening, u=uo,
where u is the crack opening, at the end of the simulation time. To illustrate the features of the
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Figure 14. Normalized crack opening: (a) using present anisotropic model and (b) using the model developed
by Schreyer et al., [10].

Figure 15. Normalized resultant force versus displacement of the right end for the specimens shown in
Figure 14: (a) using the present anisotropic model and (b) using the model developed by Schreyer et al., [10].

current model, the results are obtained using the anisotropic constitutive model (Figure 14(a)) and
the original constitutive model developed by Schreyer et al., [10] (Figure 14(b)). It can be seen that,
for the original model, the crack occurs in the region associated with the material having ��

nf
, while

the anisotropic model shows the crack occurring in the region where there is a thickness distribution
with thin ice. This fact illustrates the desired feature of the anisotropic model that it is able to
predict preferentially failure in a region containing thin ice while the original model is not. Figure 15
shows the normalized horizontal force versus displacement at the right end of the region. The force
increases linearly up to a maximum value at which the initial failure occurs, followed by a softening
stage in which the force reduces to zero during the evolution from a micro crack (i.e., initial failure)
to a macrocrack (i.e., a complete crack where the material is completely separated to create traction-
free surfaces). The complete crack is formed when the total crack opening is equal to uo. It can be
seen that, in the original model, the initial failure occurs when the stress component 
11 reaches
the critical value ��

nf
, while in the anisotropic model, the initial failure occurs when 
11 is still far

below the critical value ��
nf

. This behavior occurs because of the dependence of the failure stress on
the minimum thickness in the thickness distribution as shown in Equation (51). The displacements
at the end of the softening stage of the two models are the same and equal to uo. However, the
fracture energy (which is the area under the force-displacement curve) of the anisotropic model is
half that of the original model. In other words, in the anisotropic model, less energy is needed to
break the region due to the existence of thin ice in the region. This feature cannot be represented
in the original model. Moreover, the slope of the linear elastic loading stage is different in the two
models due to the modified effective elastic moduli resulting from the thickness induced anisotropy
derived in Section 3.
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Figure 16. Schematic of a region of ice under a horizontal stretch.

Now, we want to show the effect of the orientation of the thickness distribution to the loading
by changing the configuration of thin ice. The vertical sub-region with thin ice in Figure 12 now
becomes a horizontal sub-region as shown in Figure 16. As before, we set h D 2m, h1 D 0:5m,
h2 D 1:5m, and a1 D a2 D 0:5. Using the same discretization as before, shown in Figure 13, we
obtain the results for crack opening and the relation between the force and displacement at the right
end of the region. The results are the same for both constitutive relations and also the same as that
of example 1 using the original model as shown in Figures 14(b) and 15(b). There is no difference
between the new anisotropic model and the original model with this orientation of the thickness
distribution. The extensional modulus and failure stress in the 1 direction of the anisotropic material
(i.e., the material containing the two-category thickness distribution) are the same as those of the
isotropic material (i.e., the material of the region with uniform thickness) as shown in Equations (24)
and (54).

6.2. Example 2: a region of ice under shear loading

This example is chosen to illustrate the effect of a thickness distribution on the formation of cracks
in a shearing mode. Consider a square region of ice with size L D 100 km, as shown schematically
in Figure 17(a). The left side of the region has zero velocity prescribed. A wind field is uniformly
applied to the region in the vertical direction, and the wind velocity is taken to be a linear func-
tion of time (i.e., vwind1 D 0 and vwind2 D Aot where the value of constant Ao is 10�6 and t is
time). Similar to example 1, there is a thin sub-region that is composed of a thickness distribution
containing two categories whose thicknesses and area fractions are .h1; a1/ and .h2; a2/, respec-
tively. The remainder of the region has uniform thickness h D 2m. Numerical values are chosen
as before to be h1 D 1m, h2 D 3m, and a1 D a2 D 0:5. For the numerical simulation using
the MPM, the region is initially discretized into 10 � 10 cells on the background grid of 14 � 14
cells as shown in Figure 17(b). All cells are 10 km on a side, and there is one material point per cell
initially. Additional material points are used to model the prescribed velocity boundary condition
of the left side of the region. Figure 17(b) also shows different types of material points used in the
simulation: the blue ones are material points whose velocities are prescribed, the red ones are mate-
rial points having uniform thickness h D 2m, and the green ones are material points having the
aforementioned thickness distribution with two categories. The material whose properties are shown
in Table IV is employed for this example. Note that for this material, the failure stress in shear is
smaller than the nominal tensile failure stress, rather than three times the tensile failure stress as used
in the previous example. These values are chosen to explicitly illustrate mixed-mode rather than
tensile-mode failure.

The simulation runs from the initial, undeformed state until a complete crack propagates across
the region. Again, to illustrate the features of the current model, the simulation is compared with the
original model developed by Schreyer et al., [10]. Figure 18 shows the normalized crack opening
u=uo at time t D 203040 s generated by the two models. It can be seen that with the current model
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Figure 17. (a) Schematic of a region of ice under wind loading producing shear; (b) background grid and
location of the different types of material points used in the numerical simulation.

Table IV. Properties of the material employed for the problem shown in
Figure 17.

Young’s modulus �nf �sf f
0

c uo
(kPa) Poisson’s ratio (kPa) (kPa) (kPa) sm (m)

1000 0.36 25 15 125 4 3000

Figure 18. Normalized crack opening at a certain time: (a) using the present anisotropic model and (b) using
the original model developed by Schreyer et al., [10].

as shown in Figure 18(a), the crack due to shear occurs in the area where thin ice exists (i.e., the area
with the two-category thickness distribution). However, this is not the case for the original model,
as can be seen in Figure 18(b), in which the crack due to shear occurs in the area of high shear stress
regardless of the existence of thin ice. In this example, the average thickness that is the property
used in the original model is constant over the whole region.

7. CONCLUSIONS

In a two-dimensional model of the Arctic ice cover, ice of varying thickness has varying stiffness and
strength. In global climate models, ice thickness is tracked through a thickness distribution function
that evolves with the flowing ice due to mechanical redistribution and due to thermodynamic pro-
cesses. In this paper, we use the thickness distribution to develop an effective or equivalent material
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description for an element of ice with varying thickness. The result is a constant thickness equiva-
lent element with an anisotropic, elastic response. Specifically, the equivalent material is orthotropic
with material axes aligned normal and tangential to a lead direction. This model more accurately
accounts for the deformation of pack ice because the character of internal ice stress depends strongly
on the existence of thin ice. In particular, the model can represent implicitly the existence of open
water in the thickness distribution because the effective moduli go to zero as open water appears in
the thickness distribution. It should be noted that the developed internal stress in the ice also depends
on the orientation of the external forcing relative to the orientation of a lead, a feature also captured
by the model.

In the failure regime, a decohesive constitutive model determines the lead orientation as well as
the amount of lead opening and any subsequent closing. A decohesion function, which is a function
of traction on a potential crack surface and of the material strengths in failure, is employed to predict
the initial failure of the material. In contrast to the original decohesive model developed in [10],
the material strengths depend on the direction of the crack surface. The strengths in the directions
of the material basis vectors are determined with reference to the thickness distribution within the
element of ice. The strength in any direction is interpolated from the basic strengths in the three
material directions. In both the elastic and failure regimes, we assume that the thickness distribution
is oriented with any existing lead and also associate the thinnest part of the thickness distribution
with the lead. This assumption precludes the necessity for two distributions, one associated with and
oriented with the lead ice and the other associated with intact ice.

Typical examples for initial failure curves are presented to illustrate the capability of the model
to predict the failure behavior of the ice with a thickness distribution. Evolution of failure is also
discussed where an associated flow rule is proposed to determine the discontinuity formation across
the crack surface. The developed constitutive relation is compatible with any domain-based numeri-
cal method such as the finite element method or the MPM. We use the MPM to model regions of ice
under idealized loading, with idealized thickness distributions. The examples are chosen to illustrate
the change in ice behavior when the orientation of loading changes with respect to the orientation
of a lead. The model predicts our intuitive notion that tensile failure should occur in thin, lead ice if
tension exists across a lead. However, the thin lead ice does not impact failure if the tension exists
along the lead direction. Another example shows how shear failure can also occur preferentially in
thin lead ice.

This work demonstrates a model that explicitly accounts for leads through an elastic-decohesive
constitutive model for sea ice. Moreover, the rheology is tightly connected to the thickness dis-
tribution so that the mechanics reflects essential properties of sea ice. Specifically, sea ice is
heterogeneous and anisotropic in behavior in the aggregate because of the presence of leads, ridges,
and other flaws. Future work will assess this formulation in the context of a global climate model
where its performance can be analyzed in the presence of naturally occurring and complicated forc-
ing. In such a setting, simplifying assumptions related to the thickness distribution in leads and the
piecewise representation of leads can be better evaluated.
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